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Abstract—The governing differential equations and the boundary conditions for the large
deflection of rectangular sandwich plates are derived using the principle of the complementary
energy. The governing differential equations are transformed into systems of nonlinear algebraic
equations using the finite difference method, and solved by successive iteration. For the purpose
of illustration, deflection behavior of simply supported rectangular plates under uniform load
is presented. The deflection behavior of plates with various values of shear rigidities and
intensity of applied loads is studied. The change in the stress patterns of the face layers of the
plate is also discussed.

NOTATION

dimension of the plate

plate thickness, distance between the centers of two face layers (Fig. 2)
q— 4

16Eth®

uniform transverse load

thickness of the face layers

deformation in the x-axis direction

deformation in the y-axis direction

deformation in the z-axis direction (deflection)

deflection due to bending only

deflection due to shear only

Eth?

2(1——112—) , flexural rigidity of sandwich plates

elastic modulus of face layers
assumed stress function at the boundary
shear modulus of the core

, non-dimensional load

M bending moments in the x- and y-directions, respectively

X ¥y
N,, N,, N,, membrane forces in transverse loaded plate
Ni, N2, N3, membrane forces in plane stress problem

Qx, Oy shearing forces
S G.h
o coefficient for deflection due to bending, equation (52)

coefficient for deflection due to shear, equation (53)
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B slope in x direction for the sandwich plate, equation (14)
vy slope in y direction for the sandwich plate, equation (15)
Vevs Vyx shearing strains
P % x 103
v Poisson’s ratio
o* o2

2 J— —_
v ox? + ay?
& function defined by equation (22),
h function defined by equation (23).

1. INTRODUCTION

Due to the extensive use of sandwich type construction in the fabrication of major structural
components, the bending and buckling behavior of sandwich plates have been widely
investigated[1-4]. However, most of these investigations are based on the small deflection
theory. The small deflection theory may give satisfactory results if the deflections are small
compared to the thickness of the plate. However, if the deflections are of the same order
as the thickness of the plate, the stretching of the middle surface should be taken into
account, i.e. the large deflection theory should be used. The governing equations for the
large deflection of sandwich plates were first derived by Reissner[5]. Wang[6] later obtained
the equations for the large deflection of thin homogeneous and sandwich plates and shells
using the principle of complementary energy. Due to the complexity of the non-linear
equations no practical problem was studied by either author.[3, 4].

Large deflection behavior of rectangular sandwich plates has been investigated by
Kan and Huang[7] and Awan{8]. The first of these two papers used a perturbation method
and only the deflection of rectangular sandwich plates with all boundaries fixed was con-
sidered. Awan[8] used a series solution to solve the two governing differential equations
derived by Reissner[5] for the deflection of simply supported rectangular sandwich plates
with all boundaries restrained against in-plane movement. This type of boundary condition,
as pointed out by Folie[9], is very rare in practice. A deficiency of the method presented in
these papers{7, 8], was the inability to obtain the stresses in the plate which are more
important in the practical design than the deflection[9].

In this paper, in addition to the two differential equations obtained by Reissner[5], the
third differential equation which is needed for the evaluation of the stresses in the plates
and the boundary conditions for the large deflection of sandwich plates are derived. Expres-
sions for stress resultants are also obtained in terms of deflection, a stress function and
auxiliary functions. The three governing partial differential equations are then transformed
into systems of nonlinear algebraic equations using the finite difference method, and solved
by successive iteration. For the purpose of illustration, simply supported rectangular plates
under uniform load are considered. The edges of the plates are assumed to be free to move
in the direction of the plane of the plate (no restriction is imposed on the rigid movement of
the edges). The convergence criteria are discussed. A comparison with the deformations in
small deflection theory is made using the results given by Plantema[2], and then the method
is applied to the study of the large deflection behavior of sandwich plates with various types
of shear rigidities and applied load intensities. The change in the stress patterns in the plate
is also discussed. The assumptions made with regards to the sandwich plate are: (1) The
face layers are membranes and they are of same material and of equal thickness; (2) both
the core and face layers are isotropic; and (3) the core takes only the transverse shear stress.
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2. GOVERNING EQUATIONS

Consider a rectangular sandwich plate of dimensions a by b with two facings of thickness .
Figure 1 shows the coordinate axis used and Fig. 2 shows an element of plate. The first two
governing differential equations have been derived by Reissner[5]. They are

w2 *w w
V2 2 — 2 ( —_—— .
viE Etl: ox 6y) ox? 6y2] M
and
D 0*F &*w *F  *w  0*F &w
szvz =[1_ VZ][— R A e |. 2
v hG, a9+ dy? ox* “oxdy oxady ox* 0y? 2

In order to obtain the third governing differential equation the relations between the stress
resultants and displacements are needed. These conditions together with the boundary
conditions may be obtained by taking the first variation of the complementary energy using
the equilibrium equations as constraint conditions[6, 10-12].

y

Fig. 1. Rectangular sandwich plate.
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Fig. 2. Element of sandwich plate.
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The equilibrium equations are

ON, + ON,, 0 3)
ox dy
ON, ON,,
dy + Ox (4)
80, 80, _ w *w *w
— 4+ = N,— +2N,,—— + N, — = 5
dx 0y+q+ "6x2+ xy6x6y+ Y ay? 0 ©)
oM, oM,
—— — 6
e~ 00 (©)
oM, oM.,
—— - -Q,=0. 7
Jy 0x % )
The stress-resultants and displacement relations are
N,—VwN, ou 1 (ow z
X Y = 8
2Et ox * 2 (ax) ®
N ) ony: o
2E¢ ay  2\dy
(_.—1+V)N"”-_-€_lf @ a_wgy (10)
Et dy Ox 0oy Ox
0
M, —vM,= D(1 —vz)—ﬁ (11)
0x
2 07
M, —vM, = D(1 —v*) — (12)
oy
1 —v (0 dy
=—D — 4+ == 13
Moy 2 (6y + 8x) (13)
ow Q@
= e = 14
b Ox * G.h (14
ow  Q,
=——+ 15
Y o TG (15)
and the boundary conditions are:
(a) For simply supported edges
atx=0anda
N.,=N, or u=o (16a)
N,=N, or v=o0 (16b)

w=o0, M, = o, M,,=o(ory=0) (16c)



aty=oandb

(b) For fixed edges
atx=oanda

aty=oandb

(¢) For free edges
atx=oanda

Nx=N1
N, =Nj;
M. =o0,

N,=N,
N,,=N;
M =o,
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N,=N, or v=o0 (17a)

N,,=N; or u=o (17b)

w=0, M,=o, M,, =o(or B=0). (17¢)

N,=N, or u=o (18a)

N,,=N; or v=o0 (18b)

N,=N, or v=0 (19a)

Ny=N; or u=o (19b)

w =0, y =0, f=o0 (19¢)

(20a)

or u=o0 (20b)
ow ow

M., =o(ory=o0), Nx(a—y—) + ny(a) +Q,=0 (20c)

(21a)

or u=o (21b)
ow ow

M, =o(or =0), Ny(a—y—) + Nyx(é}-) + Q,=o. (21c)

It should be noted that the conditions, M,, = o or y = 0 in equations (16c) and (20c), and
M,, = o or f = o in equations (17c) and (21c) depend on the edge condition of the plate.
If the shear strains are prevented by the presence of an edge stiffener, the condition y = o
(or B = o) should be used. If no edge stiffener is applied to prevent shear strains, then
M,, = o (or M, = o) should be used.

Introduce two new functions such that

8L

P =% " 3y ()
op 0

n//=—ﬂ——y- (23)

dy ©Ox
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Substituting equations (14 and 15) into equation (22) with the aid of equation (5) and
noting that

0*F
x= 5‘;{ (24)
d*F
N, = pr (25)
&*F
Ny, = —
x¥ % 0y (26)
yields
1 O’F 9w 0*F 9w O*F o*w
= V2w — G — p e = D e T "
¢ ¥ G.h [q 8y* ox* “oxdy ox By+ ax* 6};2} @7
Solving for stress resultants from equations (11-15), yields
af oy
M,=D
5] <
a
M,=D
[ o +6y} (29)
op oy
M,, -
F0-9[E+2] (0)
w
=G h —
0.=G.hlp+ 2] @31
é
0,=G h[y+ W] (32)
dy

Substituting equations (28-32) in equations (6 and 7), with the aid of equations (22 and 23)
and then solving for f# and y yields, respectively, to

D [6p 1~vay] ow
b= Gh[é‘x+ 2 5)7]_5; (33)
2 1—-vayl] ow
v 5::;[5"““2 éﬂ‘a—;' 39

Introducing § and 7y in equations (23) and simplifying yields

., G,
V- s Y =0 (35)

which is the third governing differential equation. The same equation was obtained by
Kao[11]. This equation is in the same form as the one obtained by Reissner{12] for homo-
geneous plates with shear deformation.
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The expressions for the stress resultants in terms of @, ¥ and w can be obtained from
equations (28-32) with the aid of equations (33 and 34). Thus

woof G ST A [
DY A P
o BIDLE  2

ool

3. METHOD OF SOLUTION

The three governing partial differential equations, equations (1, 2 and 35) are transformed
into systems of algebraic equations using finite differences, and solved by successive itera-
tions. For the purpose of illustration, a simply supported rectangular plate with edge
stiffener under uniform load is considered herewith. The boundary conditions for the
deflection and stress resultants in this case can be readily shown from equations (16, 17,
33-36 and 37) to be

w=0 (41)
Pw D [d%¢ ¢ (1—v)? %y
—= —— v 42
ox*  hG, [6x2 v ay? + 2 x 6y] “42)
w2 o
& a-ndy )
along x = o and x = a4, and
w=0 (44)
2 2 2 2 a2
6_\«2:=D [6¢+6¢ (1-v 61/1] 45)
dy*  hG, oy? 2 oxdy
2 o
ay 1-vax (46)

along y=o0and y=5.
The boundary conditions for in-plane force can be converted to geometric constraints
on F, for constant edge normal forces, by assuming a stress function that satisfies the
equilibrium equations near the edges. Equations (3) and (4) are satisfied at the boundaries
if the stress function F is assumed to be F, where F is the solution of the plane stress problem
corresponding to the edge loading on the actual plate. For the case of constant edge forces,
F is given by
Fe N,
2

(x* — ax) + - (y — by). (47)
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Thus in view of equations (24-26) the edge constraints on F become
*F  °F Nia

EEIEs= =N along y=0 and y=25 (48)
PE_PF__Nab_ o o and
P along x=0 and x=a. (49)

The conditions imposed on function ¥ are that  is antisymmetric function, i.e.
a b
Yy=o0 along x= 3 and y= 3 (50)

and at the edges ¥ is given by the boundary conditions on y, and B, for plates with edge
stiffeners and on M, for plates without edge stiffeners.

With the boundary conditions for w, F and y specified and the equations (1, 2 and 35)
in the finite difference form, the first iteration assumes that y is zero and F is zero or equal
to an initial plane stress condition and equation (2) is solved for w. This result will corres-
pond to the small deflection theory without shear deformation. The procedure for the next
iteration is: (1) Use the previous values of w and assume that the plate has that shape, to
evaluate the derivatives of w. A similar procedure is used for F (which would be zero or
constant for the first time). Knowing the derivatives of w and F, the auxiliary function ¢,
can be evaluated from equation (27) in which the constant, g, is neglected since only the
derivatives of ¢ are needed. (2) Evaluate the derivatives of ¢ to set up the boundary condi-
tions for y, and then solve equation (35) for ¥. (3) Assuming ¢, ¥, and w, and their deriva-
tives are known from previous cycle, solve equation (1) for F. (4) Finally, with ¢, y, and F
as constants, find a new set of values for the deflection w. Compare the new values of w
with the previous ones and if they do not agree within a prescribed tolerance, repeat steps
1, 2, 3, and 4 until they do.

4. CONVERGENCE CRITERIA

The computer program is set to store the relative difference between 3 consecutive values
of w at the center of the plate, namely

check 3 = (w; — w;_y)/w;
check 2 = (WH.]_ - Wi)/wH-l'

‘Whenever both differences are less than or equal to 0-004, it is assumed that an acceptable
convergence has been achieved.

The reason for this double check in convergence is due to the fact that successive values
of w are of an oscillatory nature, and with this test it may be safely assumed that the point
taken as the real deflection is not in the highest (or lowest) part of one of the oscillations,
unless the oscillation itself is already very small.

From Fig. 3 it is possible to find the values w;_;, w; and w;,,, corresponding to three
successive iterations. If the convergence criteria were based.on the difference between two
consecutive values of w only, then the final answer would be taken as w; or wi,y, which
might differ 10 or 15 per cent from the real answer.

If a third value is added, the convergence criteria will not give w; or w;,; as an answer,
unless the difference between w;,, and w,_, is also very small.
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Fig. 3. Convergence of the solution.

5. COMPARISON WITH PREVIOUS RESULTS—
SMALL DEFLECTION THEORY

The approach employed herein is first used to analyze the small deflection behavior of
sandwich plates. The results obtained are compared with those given by Plantema{2] who
assumed that the shear and bending deflections are not inter-related and thus can be super-
imposed. He introduces the “ partial deflections”” by putting

W= wb -+ ws (51)
and
4
4a
W)y, == 0y 3 (52)
4
W=, 2o (53)

where w is the total deflection and w, and w, are the deflections due to bending and shear,
respectively. Values of a, and a; are given by Plantema[2] for several aspect ratios. For a
square plate, o, = 0-00406 and o, = 0-0737; in both cases the solution has been obtained
using a series approximation.

Figure 4 shows the finite difference solution for various grid spacings. The results show
that the calculated deflection increases as the number of grid points increase and that
Platema’s approach provides an upper bound. It should be mentioned here that the finite
difference results will not converge to Plantema’s because, from Plantema’s solution

ow,
=5
O o
ow,

Qy = 8

oy
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Fig. 4. Effect of number grid points on calculated shear deflection of square sandwich plate.

whereas, in the finite difference approach

0. s(s+2)

but # and y actually depend on w, ¢ and Y as shown in equations (33 and 34).

6. NUMERICAL RESULTS

The theory derived above has been used to study the effect of shear and its interaction
with the plate membrane forces on the deformation behavior of a simply supported sandwich
plate having infinitely rigid edge stiffeners; the plate is subject to a uniformly distributed
transverse load. The effects studied are: (1) the load-deformation relationship, (2) the
membrane force and bending moment distributions in the plate, and (3) the distribution of
normal stresses in the top and bottom face layers. The results discussed below have been
obtained for a sandwich plate having a face layer thickness to plate thickness ratio, t/A,
equal to 0-01 and a span to plate thickness ratio, a/k, equal to 44-5.

The effect of core shear rigidity on the deformation behavior of a sandwich plate is shown
in Figs. 5 and 6 in which the deflection has been normalized with respect to the plate thick-
ness, A, and load is given in terms of the non-dimensional parameter, q. The dashed curve
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in Fig. 5 shows the effect of the interaction of the shear deformation and the plate membrane
forces on the center deflection of the plate; the other two curves show the large and small
deflection behavior of the plate where the core shear rigidity is infinite. A comparison of the
dashed and solid curves (small deflection theory) indicates that the presence of shear deforma-
tion increases the load range over which the plate deformation is essentially linear. For the
plate configuration studied, the shear deflection component varied from 8-3 per cent of the
total deflection for g less than 4 to about 11-5 per cent for g equal to 15. Besides increasing
the center deflection of the plate, shear also influences the deflected shape of the whole plate
as shown in Figs. 6a and b. Figure 6a shows the effect of shear on the plate deflection at
various points on the plate diagonal. Although Fig. 6a indicates an increase in deflection
throughout the plate, it does not show how this increase is distributed. This is shown in
Fig. 6b where the shear deflection, w,, and bending deflection, w,, components along the
plate diagonal are shown normalized by their respective maximum values; the curves shown
are for ¢ equal to 31-5. Whereas the bending deflection increases slowly to its maximum
value at the center, the shear deflection reaches over 80 per cent of its maximum value in the
outer quarter of the plate.

The bending moments, M, and M, along the {-¢ axis of the sandwich plate are shown
in Fig. 7; these moments have been normalized with respect to the M, value at the center of
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Fig. 7. Normalized bending moments along £~ axis.
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the plate. The movement of the point of maximum bending moment, M, away from the
center of the plate with increasing lateral load, ¢, is similar to that noted earlier[13, 14] for
homogeneous plates; at g = 31-5, the point of maximum moment has moved to approxi-
mately the quarter point on the center line of the plate. An analysis of the plate moments
indicates that the presence of shear deformation increases the peak values of M, and M,
by about 5 per cent over that obtained when the shear rigidity is infinite.

Figure 8 shows the variation of the membrane forces, N, and N,, along the {-¢ axis for
various values of g; these forces have been normalized with respect to N, at the center of
the plate. Although the distribution of the membrane forces along the £-¢ axis of the plate
is not significantly effected by the load magnitude, the maximum value of N, at the center
is increased by more than 400 per cent while the minimum value of N, at the edge of the
plate is increased by more than 500 per cent as ¢ is increased from 10 to 31-5. In addition
an analysis of the plate membrane forces indicates that the presence of shear deformation
increases the maximum value by about 18 per cent and the minimum value of N, by about
26 per cent over the corresponding values for the case where the core shear rigidity is
infinite.

Finally Figs. 9 and 10 show the effect of load on the distribution of the total normal stress
distribution in the x- and y-directions in the upper and lower face layers of the plate;
Fig. 9 shows the variation of ¢, along the ¢-¢ axis of the plate in the x-direction. Although
the maximum tensile stress occurs at the center of the plate, the maximum compressive
stress occurs at a point away from the center; for ¢ equal to 31-5 the maximum compressive
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Fig. 8. Normalized membrane forces along ££axis.
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stress is about 50 per cent greater than that at the center of the plate. Thus if the upper face
Jayer were to fail by local buckling, it would occur away from the center of the plate. The
variation of ¢, along the {-¢ axis is shown in Fig. 10 and it is notable that compressive
stresses exist both in the top and bottom face layers.

7. CONCLUSIONS

The results of this study show that the method of analysis developed in this paper provides
a useful tool for studying the large deflection behavior of sandwich plates. It should be
emphasized that the finite difference formulation used, herein, makes it possible to obtain
not only plate deflection but also the corresponding bending moments and membrane forces.

The method can also be extended to cover the case of shear deformation of homogeneous
plates; this problem is currently under study.
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AbcTpakT—ITo IpHHIHITY AOMONHATENLHOM SHEPTHH JUTst GONBIIOro Nporuba MpsMOyTOMbHBIX
INTAT ¢ YEPEaYICIIAMMCA CIIOAMHE NONYMWIH YNpaBinspomwne tudbepeHinanbuse ypapHCHUS,
OtH nuddepeHumanpHbie YPAaBHEHHS NPEBPATHAH METONOM QHHHTHOH KOMIICHCADHH B
CHCTEMBI HEJTMHEHHBIX aNreOpanyecKuX ypaBHEHMH, W HX PELINIIH HOCHEN0BATETLHBIM [TOBTO~
perrem. Ilpencrasnsercas MILTIOCTPALMs NOBGACHMS NPAMOYIONLHMIX THAAT, MOMACPKHBA-
€MBIX OOBIYHEIM coco60M, HpH nporHbe noR oaROpOAHOH Harpyskoh. Mizyvaetcs nosencHue
IIPH MPOrAbeE INIHT C PAa3/IHIHBIMM YIPYFOCTSMH HA CHBHT M C PA3IMYHBIME HHTCHCHBHOCTAMME
NPHIOKEHHON Harpys3kd. Takke pacCMATPHBAIOTCA H3MEHEHHS B DACHONOXEHHH AedopMa-
UMOHHBIX Haﬂpxxcem{ocreﬁ H& NOBEPXHOCTHRIX CNNOAX IUIHTHI.



